INTRODUCTION TO THE AUTUMN SKY
(Duration: 1.5 - 2 hrs)

Summary of Presentation

INTRODUCTION TO STELLARIUM: BEGINNING USAGE
• Open source cross-platform free planetarium software
• Useful in Observing Exercises
• Demonstration of most frequently used controls
 • toggles - constellations, grids, ground
 • drag & move
 • search for Andromeda galaxy
 • zoom function

The Status Bar
• Location
• Field of View
• Frame Rate
• Date
• Time (ref to Universal Time)

Side Controls - Setup/Customization
• Location on the Earth
• Time & Date Setting
• Sky & Viewing Options
• Search Window
• Configuration Window
• Help

Bottom Controls - Most Frequent Usage
• Constellation Lines
• Constellation Labels
• Constellation Art
• Equatorial Grid
• Azimuthal Grid
• Ground
• Cardinal Points
• Atmosphere
• Night Mode
• Quit
Quick Introduction to the Autumn Sky

Review of North Circumpolar Sky Constellations
- review terminology & constellations from Planetarium Session 1
- the altitude of North Celestial Pole corresponds to the observer’s latitude
 - also radius of NCP circular cap
 - stars within the cap are seen all night long all year round, never rising or setting
- Aside: can be demonstrated with a simple geometric proof

Introduction to the Constellations in Season
- stars that rise and set
- seen early in the evening

The Equatorial Coordinate System
- apparent path of stars across the celestial sphere used to introduce the equatorial coordinate system
 - celestial equator is fundamental reference circle
 - declination - N & S of celestial equator
 - hour circles of Right Ascension 0-24h from W to E
- provides fixed coordinates for stars cf alt-azimuth system
- inclined to alt-azimuth system by colatitude (angle of rising & setting)
- practical usage
 - sidereal time - what stars are in the sky?
 - determine time object in sky

The Magnitude System & Distance Determination
- Apparent Visual Magnitude
 - combination of intrinsic brightness & distance
 - Hipparchus’ brightness numbering scheme
 - brightest magnitude 1, faintest magnitude 6, equal steps of brightness by eye
 - eye has a nonlinear response to brightness
 - regularizing Hipparchus’ scheme
 - define 5 magnitude change to correspond to a 100-fold change in brightness
 - so 1 magnitude change corresponds to ~2.5 change in brightness
 - 2 magnitudes ~6.25 (or 2.5 x 2.5) change in brightness (note multiplication not addition)
- Absolute Visual Magnitude
 - removes accident of distance so measure of intrinsic brightness
 - magnitude at 10 parsecs (definition of parsec and equivalence in light years)
 - knowing both magnitudes allows distances to be determined (standard candles)
CONSTELLATIONS

- **Boötes the Herdsman**
 - contains the asterism of the Kite
- **Corona Borealis the Northern Crown**
- **Hercules**
 - contains the asterism of the Keystone
 - kneels on the head of the Dragon
- **Lyra the Harp**
 - the bright star Vega is part of the asterism of the Summer Triangle
- **Cygnus the Swan (First Nations’ Canada Goose flying down the Milky Way in fall)**
 - asterism of the Northern Cross
 - the bright star Deneb is part of the asterism of the Summer Triangle
- **Aquila the Eagle**
 - the bright star Altair is part of the asterism of the Summer Triangle
- **Ophiuchus the Serpent Bearer**
- **Serpens Cauda & Caput**
- **Pegasus the Winged Horse**
 - contains the asterism of the Great Square
 - number of stars within the square indicate atmosphere’s transparency
- **Andromeda**
 - the great galaxy in Andromeda found by waltzing
 - 2.2 million light years distant
 - farthest object seen with the naked eye
- **Sagittarius the Archer**
 - contains the asterisms of the teapot and teaspoon
 - direction to the centre of our Galaxy
- **Scorpius the Scorpion**
- **Libra the Scales**
- **Capricornus the Sea Goat**
 - asterism of the Big Smile

REFERENCE HANDOUTS

- Notes on Observing
- General Information on Observing
- StarCharts
- Observing Exercises