
General Astronomy II – PHYS1820 
 

COMPACT OBJECTS 
 

INTRODUCTION 
 

Black Holes may seem mysterious, but they consist of the same ordinary matter that makes up 
the Sun, the Earth and everything on it. The main difference is that the matter in a black hole is 
squeezed into an incredibly small volume. If the Earth were to become a black hole, it would 
have to be compressed to the size of a marble about 1 centimetre in diameter. Newton’s law of 
gravitation 

𝐹 =
𝐺 𝑚1 𝑚2

𝑟2
 

 

tells us that the attractive force F between two masses m1 and m2 increases as the square of 
the distance r between the two bodies diminishes. Here on the Earth’s surface we are about 
6378 km from the Earth’s centre. On a marble-sized Earth we would only be 0.5 cm from 
its centre. This huge reduction in r makes the gravitational attraction more than a billion times 
greater than on Earth normally.  

 
Objects can escape from the Earth if they are shot away with speeds larger than 11 km/s. This is 
a tremendous velocity. But to escape a black hole, an object would need a velocity greater than 
the speed of light! However, according to the theory of relativity, nothing in Nature can move 
faster than the speed of light. In other words, not even light escapes. Black holes are truly black. 
 
Today we have very strong evidence that there is a black hole right at the centre of our own 
galaxy, the Milky Way. In this exercise we will re-discover this black hole and determine its 
mass. 

Kepler’s Laws 
 

In the early 1600s, Johannes Kepler deduced the three laws that describe the motion of the 
planets around the Sun. Kepler’s first law describes the trajectories of the planets as ellipses, 
with the Sun at one focus of the ellipse. Kepler’s second law relates the area A crossed by the 

line joining the Sun and the moving planet per unit time, such that A/t = constant. Kepler’s 
third law relates the square of the period P of the orbit in years and the cube of the semi-major 
axis of the elliptical orbit (which is half the distance of the longest axis of an ellipse) in units of 
astronomical units (AU). The orbital period of a planet is the time it takes it to make one full 
revolution around the Sun. It was later shown by Newton that P can be computed from: 
 

𝑃2 =
𝑎3

(𝑚1 + 𝑚2)
  

 



where m1 and m2 are masses in multiples of the Sun’s mass (the solar mass), and could be the 
mass of a star and a planet, for example. This law holds for bound orbits in the gravitational 
field of spherical objects, so it is also true for stars and black holes. Kepler’s third law says that if 
you know two of the following three quantities: the period (P), the semi-major axis (a) and the 
total mass (m1 + m2) of the objects together, you can compute the unknown one.  
 

The Observations 
 
Observations of stars near the centre of the Milky Way are difficult. The many stars and dusty 
clouds between us and the centre obscure our view out towards the centre. Fortunately, 
infrared light has a longer wavelength than visible light and is much less obscured by the dusty 
clouds so infrared light from stars at the centre can reach us. 
 
In successive images, taken at different times, the stars near the Milky Way centre move a bit. 
One star in particular, called S2, has moved a lot over the years.  
 

The mass computation 
 

With the positions of S2 listed in Table 1 we can determine the mass in SgrA* using Kepler’s 
laws. Masses are mentioned in Kepler’s third law, so we can use that law to find the mass of 
SgrA*. The law states that if you want to find the total mass m = mBH + mS, i.e. the mass of the 
black hole (mBH) and the star (mS) together, we need to know the period (P) and the semi-major 
axis (a) of the stellar orbit.  
 
You will first find out the total mass and then later figure out how much belongs to the black 
hole and how much to the star. 
 
You can determine the semi-major axis (a) of the stellar orbit by fitting an ellipse to the 
positions of S2 as listed in Table 1. 
 

1. Plot all (x,y) positions on the graph. 
 

2. Indicate the uncertainty on the x and y position for each point. You can do this by 
drawing bars with the size of the uncertainty. 

 
3. Draw an ellipse by eye that best matches these measurements. The ellipse does not 

have to go through the points exactly because of the uncertainties in the positions. 
 

4. Now measure the semi-major and semi-minor axes in arcseconds. Convert this to a 
length in AU using the fact that 1 arc-second corresponds to 7 098.95 AU at the Milky 
Way Centre. Each focus of the ellipse is offset from the center by a distance c, related to 
the semi-major and semi-minor axes 
 



𝑐2 = 𝑎2 − 𝑏2  (1) 

 
 

Figure 1: Example of an ellipse 
An example of an ellipse, showing the semi-major axis, semi-minor axis, and distance from the center of the 

ellipse to a focus, c. 

 

Date (year) x (arcsec)  y (arcsec) x (arcsec) y (arcsec) 

1992.226     0.104 -0.166    0.003     0.004 

1994.321  0.097 -0.189 0.003 0.004 

1995.531  0.087 -0.192 0.002 0.003 

1996.256  0.075 -0.197 0.007 0.010 

1996.428  0.077 -0.193 0.002 0.003 

1997.543  0.052 -0.183 0.004 0.006 

1998.365  0.036 -0.167 0.001 0.002 

1999.465  0.022 -0.156 0.004 0.006 

2000.474 -0.000 -0.103 0.002 0.003 

2000.523 -0.013 -0.113 0.003 0.004 

2001.502 -0.026 -0.068 0.002 0.003 

2002.252 -0.013  0.003 0.005 0.007 

2002.334 -0.007  0.016 0.003 0.004 

2002.408  0.009  0.023 0.003 0.005 

2002.575  0.032  0.016 0.002 0.003 

2002.650  0.037  0.009 0.002 0.003 

2003.214  0.072 -0.024 0.001 0.002 

2003.353  0.077 -0.030 0.002 0.002 

2003.454  0.081 -0.036 0.002 0.002 
 

Table 1: Coordinates of star S2 



Column 1: date on which the position of star S2 was measured (e.g., 2000.500 means exactly in the middle of 
2000) Column 2-5: x and y positions of the star and the uncertainty in both coordinates. The units are in arc- 

seconds. The putative black hole is located at (0.0, 0.0) 
 

5. Now you need to find the period (P) of the orbit of S2. In the time the star goes around 
the black hole once the connector – the line between the black hole and the star – maps 
out the area of the ellipse. The area (Aell) of an ellipse is: 

 
𝐴𝑒𝑙𝑙 = 𝜋𝑎𝑏           (2) 

 
Kepler’s 2nd law tells you that the area traversed by the connector is proportional to the 
time spent in this area. 
 
For example, in half the period, i.e. P/2, the connector will map out half the  
area = Aell /2. More generally in the time Δt it takes the star to get from position 1 to 2, 
the connector traverses an area: 

 

Δ𝐴 =
Δ𝑡

𝑃
𝐴𝑒𝑙𝑙          (3) 

 
To get P from this formula, you thus need to determine ΔA, Δt and Aell. To do this, 
measure Aell and the ΔA between two positions from the drawing you made in exercise 
3. You can estimate areas by counting the squares on the graph paper. Now compute P 
from formula (3) for the two positions.  

 
6. Now compute the total mass m of star and black hole together using Kepler’s third law.  

 
7. How much of this mass belongs to the star and how much belongs to the black hole? 

Stars have masses which range from 0.08 to ~120 Solar masses. The total mass 
computed in 6 is much larger. It is possible that this is mostly due to the black hole if the 
star has a negligible mass mS compared to the mass of the black hole mBH (i.e., mBH >> 
mS). However, it could also be some other object, such as a dense cluster of stars, for 
example.  

 
How many suns (N) would you need at the location of SgrA* to account for the mass? 
The absolute magnitude of the Sun is M0 = +4.83. The distance to the centre of the Milky 
Way is about D = 8.0 kpc. The apparent magnitude of the Sun at the distance of the 
galactic centre is given by 
 

𝑚0 = 𝑀0 + 5 log(𝐷) − 5  (4) 
 
with D in parsecs. Calculate the apparent magnitude for N suns using 
 

𝑚(𝑁) = 𝑚0 − 2.5log(𝑁)  (5) 
 



What would be the apparent magnitude m(N) if there were N Suns at the location of 
SgrA*? 
Astronomers have measured almost no light coming from the Milky Way centre. These 
studies show that the light coming from the location of SgrA* is less than that of the 
surrounding stars. The conclusion is that the Milky Way centre is much too dark to allow 
stars to account for the measured mass. This mass must be due to a black hole. 

 
8. Black holes do not have to be as massive as the one at the center of the Milky Way! The 

definition of a black hole is given as an object from which light cannot escape. The 
escape velocity for a spherical object with mass m and radius r can be given as  
 

𝑣𝑒𝑠𝑐 = √
2𝐺𝑚

𝑟
               (6) 

 
where G=6.67x10-11 m3 kg-1 s-2. Compute the escape velocity from the Earth using the 
Earth’s mass mEarth = 6 × 1024 kg and its radius REarth = 6378 km.  
 
Now compute the escape velocity if the radius of the Earth were only 0.5 cm.  
 
Finally, compute the escape velocity if the Earth had its usual radius but had a mass that 
were 2200 times that of the Sun. The mass of the Sun is about 2 × 1030 kg. 

 
You see that the Earth is transformed into a black hole in two cases: if you compress it 
enormously or if you add an enormous amount of mass to it. The Sun has a radius that is 
a little over hundred times that of the Earth. Therefore, the second case means that you 
are squeezing an object with 2200 times the mass of the Sun into an object with a radius 
more than 100 times smaller than the Sun, in other words, also an enormous 
compression. The crucial property that makes a black hole a black hole is not mass or 
radius, but ‘compactness’. This is the ratio of mass to radius, and equation (6) shows this 
in mathematical terms. 
 
 
 
 
 
 
 
 
 
 

 
 

 



Worksheet: 
 
1 arc-second corresponds to 7 098.95 AU 
 
Semi-Major Axis (cm):     

Semi-Major Axis (AU):     
  

Semi-Minor Axis (cm):     
 Semi-Minor Axis (AU):     
 

𝑐 = √𝑎2 − 𝑏2 (cm):     
 
Area of ellipse: Aell (cm2 or g):     
 
Portion of ellipse: ΔA (cm2 or g):     
 
Time interval: Δt (years):     
 
Period: P (years):     
 
m1+m2 = a3/ P2 
Total mass: m1 + m2 (solar masses):       

 
 m0 = M0 + 5log(D) - 5 

Apparent magnitude of the Sun at the galactic center m0:     
  
 m(N) = m0-2.5log(N) 

Apparent magnitude of N suns m(N):     
 
Gravitational constant: G=6.67x10-11 m3 kg-1 s-2 

Mass of the Earth: mEarth = 6 × 1024 kg  
Radius of the Earth: REarth = 6378 km 
Mass of the Sun: mSun = 2 × 1030 kg 

𝑣𝑒𝑠𝑐 = √
2𝐺𝑚

𝑟
  

Escape velocity of Earth vesc:     
 

 Marble Earth radius: R=0.5 cm 
Escape velocity of marble Earth vesc:     
 
Heavy Earth mass: mHE = 2200mSun 

Escape velocity of heavy Earth vesc:     
 


