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We investigate long-range intensity correlations on both sides of the Anderson transition of classical
waves in a three-dimensional disordered material. Our ultrasonic experiments are designed to unambig-
uously detect a recently predicted infinite-range C0 contribution, due to local density of states fluctuations
near the source. We find that these C0 correlations, in addition to C2 and C3 contributions, are significantly
enhanced near mobility edges. Separate measurements of the inverse participation ratio reveal a link
between C0 and the anomalous dimension Δ2, implying that C0 may also be used to explore the critical
regime of the Anderson transition.

DOI: 10.1103/PhysRevLett.112.073902 PACS numbers: 42.25.Dd, 43.20.Gp, 64.60.al, 71.23.An

The phenomenon of Anderson localization—the halt of
wave transport due to destructive interferences of scattered
waves—was first discovered for electrons in disordered
solids [1–6]. John [7,8] and Anderson [9] later suggested
that it may also take place for classical waves, such as sound
or light. The latter open up new ways to study Anderson
localization that would be difficult, or even impossible, to
implement in electronic systems. Time- and position-
resolved measurements, for example, have enabled the first
unambiguous observation of three-dimensional (3D)
Anderson localization of elastic waves [10] and yield
promising results for light [11]. Further insight into this
unique regime of wave physics can be gained by investigat-
ing the correlations of the intensity fluctuations that
constitute speckle patterns. While short- and long-range
correlationsof theintensity(denotedC1,C2,C3) [12–19],and
even phase [20,21], have been predicted and observed in
the regime of weak disorder, they remain unexplored in the
localized regime and at the mobility edge (ME) where the
transition between diffuse and localized behavior occurs.
Moreover, a new type of infinite-range intensity correlation
(denoted C0), originating from scattering in the vicinity of
the source, has recently been predicted [22,23]. For a point
source embedded in a disordered medium, this correlation
was shown to be closely related to fluctuations of the local
density of states (LDOS) at the source position [24,25].
Hence, providing that an appropriate source type is used
[26], the recentmeasurements ofLDOSfluctuations [27–30]
can be considered as indirect evidence for infinite-range C0

correlations. LDOS fluctuations are expected to grow as the
states become spatially localized [28,30,31], with recent
theoretical studiesevenreporting theirvariance tobehaveasa
one-parameter scaling function of sample size and localiza-
tion length [32,33]; this means they constitute a new
tool to provide insight into the Anderson transition. In view

of theprofusionof resultsconcerningLDOSfluctuations, it is
remarkable that no direct measurement of the C0 con-
tribution to the intensity correlation function has been
reported so far [34].
In this Letter, we present the first direct experimental

evidence of infinite-range (C0) spatial and frequency
correlations of intensity above, at, and below the ME of
the Anderson transition of a disordered, strongly scattering
3D material. The experiments were performed using
ultrasonic techniques on samples in which 3D Anderson
localization of ultrasound has been demonstrated previ-
ously [10]. Comparison of experiment with theory, coupled
with complementary measurements designed to suppress
infinite-range correlations when desired, allows the C0

contribution to the correlations to be clearly separated from
the other contributions (C1, C2, or C3), unambiguously
revealing the presence of large infinite-range correlations.
We observe that these correlations grow dramatically near
the ME in our samples. Motivated by the prediction that the
LDOS fluctuations are closely related to multifractality of
the wave functions through the q ¼ 2 generalized inverse
participation ratio [28,33], we measure the anomalous
dimension Δ2 for our samples in independent experiments
and find good correspondence between this quantity and
measured C0 correlations. This clearly demonstrates the link
between multifractality, C0, and the LDOS fluctuations.
The samples investigated are disordered elastic networks

of aluminum beads, weakly brazed together to form slabs
(see Supplemental Material [35]). This porous mesoscale
structure leads to very strong scattering with low absorption
in the frequency range investigated (∼0.5–2.5 MHz ), a
crucial feature for the observation of 3D Anderson locali-
zation of ultrasound in this material. The mesoscale
structure also leads to high contrast in the density of states
of the aluminum matrix compared to that of the pores—yet
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another reason for anticipating strong fluctuations of the
LDOS. The samples were waterproofed so that the experi-
ments could be performed in a water tank with either
vacuum or air in the pores, thereby ensuring that the
detected transmitted waves had traveled only through the
aluminum bead network.
In our experiments, a tightly focused broadband ultra-

sonic pulse (with beam waist smaller than the wavelength)
is incident on the sample, and the transmitted pressure is
detected in the near field by a subwavelength hydrophone
[35]. To capture contributions to C0 due to LDOS fluctua-
tions at both the focal point of the incident wave (source
point) and the detector, we scan both the source and
detector over the surface of the sample. The recorded
pressure fields pðr; tÞ are Fourier transformed to obtain the
intensity Iðr;ωÞ ∝ jpðr;ωÞj2 as a function of frequency for
each pair of source and detector positions. The intensity
correlation function is calculated as

CωðΔr;ΩÞ ¼
hδIðr;ω − 1

2
ΩÞδIðrþ Δr;ωþ 1

2
ΩÞi

hIðr;ω − 1
2
ΩÞihIðrþ Δr;ωþ 1

2
ΩÞi ; (1)

where the angular brackets denote ensemble averaging and
δI ¼ I − hIi is the fluctuation of the intensity. Ensemble
averaging is done by scanning over many source and
detector positions corresponding to the same Δr. For
comparison, experiments with a single (stationary) source
point were also performed, in which case the ensemble
averaging was done only over all possible detector posi-
tions; this suppresses C0 correlations due to LDOS fluc-
tuations at the source. In what follows we will study spatial
correlations CωðΔrÞ ¼ CωðΔr; 0Þ and frequency correla-
tions CωðΩÞ ¼ Cωð0;ΩÞ separately.
Figure 1 shows the spatial correlations measured near

f ¼ ω=2π ¼ 2.4 MHz, the frequency at which Anderson
localization of elastic waves was demonstrated in this
sample [10]. For both types of experiments, the correlations
decay rapidly at small Δr due to C1, with a slower decay
due to C2 and C3 that extends out to Δr ∼ 10 mm, beyond
which CωðΔrÞ becomes independent of distance. For the
data where the source position is varied, an asymptotic
value of order unity is seen for the correlations, showing
clear evidence of a C0 term due to LDOS fluctuations at the
source. By contrast, no infinite-range correlations are seen
for the single-source data, consistent with the fact that the
LDOS at the source position does not fluctuate in this case.
To gain further insight into this behavior, we compare

our experimental data with theoretical calculations. We
compute C1, C2, C3, and C0 correlation functions assuming
weak disorder (kl ≫ 1, where k is the wave number in the
medium and l is the mean free path) and write the full
correlation CωðΔrÞ as a function of three fit parameters: A,
CðinÞ
0 , and CðoutÞ

0 . Although this calculation is not exact, the
parametrization into four fundamentally different classes of
speckle correlations involving phenomenological constants

should be valid even in the critical regime. The parameter A
quantifies the magnitude of C2 and C3 correlations, CðinÞ

0

characterizes the magnitude of the genuine C0 correlation
due to the LDOS fluctuations at the source point, and CðoutÞ

0

measures the amplitude of the short-range contribution to
C0 due to scattering in the vicinity of both detectors when
the latter are close to each other [35]. CðinÞ

0 is the asymptotic
value of CωðΔrÞ for Δr → ∞. The solid lines in Fig. 1
show the results of performing a joint weighted fit of these
theoretical predictions to both the single- and scanned-
source data, thereby determining the values of the param-
eters shown in Table I. In this fit, we account for the fact
that CðinÞ

0 contributes only to the scanned-source correla-
tions and set CðinÞ

0 ¼ 0 for fitting the single-source data;
also, since the detector geometry is the same for both
experiments, CðoutÞ

0 is constrained to have a common value
for the two curves. Note that for white-noise uncorrelated
disorder and a pointlike source and detector in an infinite
disordered medium, CðinÞ

0 ¼ CðoutÞ
0 ¼ π=kl [22]. In our

experiments, however, both the source and detector have
finite extent (which differs in each case [35]), and the finite
size of the aluminum beads inevitably results in some short-
range structural correlations. Therefore, we expect, in
general, that CðinÞ

0 ≠ CðoutÞ
0 ≠ π=kl [23]. Figure 1 provides

strong evidence that the large asymptotic value of
CωðΔr → ∞Þ ¼ CðinÞ

0 ∼ 1 for the scanned-source experi-
ment is due to C0 correlations.
Similar behavior, with CðinÞ

0 ∼ 1, is observed over a broad
frequency range from 1.6 to 2.8 MHz, where independent

FIG. 1 (color online). Spatial intensity correlations for the two
types of experiments at 2.4 MHz. The scanned-source data show
convincing evidence of infinite-range (C0) correlations, which are
suppressed when only a single source point is used. Lines are
theoretical fits using the values of parameters given in Table I.
The inset shows the single-source data on a log-log scale in order
to reveal the extent to which the expected 1=Δr dependence is
observed for C2 and C3 at intermediate length scales. Data have
been averaged over a bandwidth of 750 kHz, and the error bars
are the standard deviations associated with the data’s statistical
fluctuations, which are observed to be inherently large near the
Anderson transition. (The open symbols for the scanned-source
data represent positions where the measurements are not as
reliable because of a smaller signal-to-noise ratio.)
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measurements of the dynamic transverse confinement of the
transmitted intensity [10] indicate that ultrasound is still
localized, with similar values of the localization length ξ
(ξ ≈ L ¼ 14:5 mm for this sample in this frequency range).
Atlowerfrequencies,at leastoneMEmustexist,sinceprevious
measurements on these samples revealed diffusive behavior
at the much lower frequency of 200 kHz [10]. To investigate
the long-range correlations as a ME is approached, experi-
ments were performed at intermediate frequencies, between
these well-established diffusive and localized regimes [10],
with representative data near 1MHzbeingpresented in Fig. 2.
Both spatial and frequency correlations increase significantly
with frequency when a ME, which we estimate to be at
approximately 1.1 MHz, is approached. In particular, the
asymptotic value of the scanned-source spatial correlations,
CðinÞ
0 , increases from 0.4 to almost 8 over the range of

frequencies illustrated in Fig. 2(a).
The frequency correlations also show large increases inC0

over this frequency range [see Fig. 2(b)] [36]. CωðΩÞ
contains infinite-range contributions from scattering both
near the source and near the detector; i.e., bothCðinÞ

0 andCðoutÞ
0

contribute to the asymptotic value ofCωðΩÞ for largeΩ [35].
The single-source measurements [which suppress CðinÞ

0 ]
show that CðoutÞ

0 increases from 0.6 to 1.3 between 0.97
and 1.07MHz. By comparing the best-fit values (see Table I),
we see that for the scanned-source case,CðinÞ

0 andCðoutÞ
0 are of

the same order of magnitude, as could be expected from the
roughly symmetric arrangement of the experiment [37].
The C2 and C3 correlations, quantified by parameter A,

also increase with frequency around 1 MHz, as found from
the data for both spatial and frequency correlations (see

Fig. 2 and Table I). Because A ∝ 1=ðkl�Þ2 to leading order
[35], where l� is the transport mean free path, the increase
of A corresponds to a decrease of kl� as the ME is
approached. In addition, the values of A found from the
fits are always larger in the scanned-source case. Keeping
the source fixed not only suppresses CðinÞ

0 but also reduces
the magnitude of long-range C2 and C3 correlations
because the latter correlations contain contributions from
scattering in the vicinity of the source. This effect does not
preclude the clear identification of C0 that stands out by its
infinite range in both space and frequency.
The frequency dependence of the asymptotic value of the

spatial intensity correlation function between 0.6 and
1.4 MHz is shown in Fig. 3(a). These data are the average
of the measured correlations forΔr between 25 and 50 mm,
where CωðΔrÞ is found to be independent of distance,
providing accurate measurements of CωðΔr → ∞Þ ¼ CðinÞ

0

when the source is scanned. It increases rapidly with
frequency near 0.78 and 1.11 MHz, reaching values up
to 13 here, and even as high as 30 in other experiments—by

TABLE I. Fit parameters, with uncertainties in parentheses. The
uncertainties are given by the standard deviation of the
parameters. For a point source and detector, the normalized
variance, Cð0; 0Þ, depends on all three parameters: Cð0; 0Þ ¼
1þ 2½Aþ CðinÞ

0 þ CðoutÞ
0 �. By contrast, the infinite-range con-

tributions depend independently on the different contributions
to C0, with the asymptotic values of the scanned-source CðΔr; 0Þ,
the single-source Cð0;ΩÞ, and the scanned-source Cð0;ΩÞ being
equal to CðinÞ

0 , CðoutÞ
0 , and CðinÞ

0 þ CðoutÞ
0 , respectively.

Parameter 2.4 MHz 0.97 MHz 1.07 MHz 1.11 MHz

Spatial correlations

A (single) 0.50 (0.02) 0.48 (0.02) 1.29 (0.04) 1.59 (0.06)
A (scanned) 2 (1) 0.8 (0.2) 6 (1) 6 (3)
CðinÞ
0 1.3 (0.2) 0.42 (0.02) 1.06 (0.08) 7.8 (0.5)

CðoutÞ
0 0.4 (0.2) 0.8 (0.2) 1.5 (0.4) 7 (1)

Frequency correlations

A (single) 0.2 (0.2) 0.8 (0.3)
A (scanned) 0.7 (0.1) 5.2 (0.8)
CðinÞ
0 0.32 (0.03) 0.9 (0.3)

CðoutÞ
0 0.62 (0.06) 1.3 (0.1)

ΩTh=2πðkHzÞ 4.35 (0.09) 7.2 (0.1)

FIG. 2 (color online). Spatial (a) and frequency (b) correlations
measured near 1 MHz, showing the increase of long-range
correlations near a mobility edge. The inset shows the character-
istic 1=

ffiffiffiffi

Ω
p

behavior expected for C2 and C3 correlations. For
both plots, data have been averaged over a bandwidth of 25 kHz,
except at the highest frequency (1.11 MHz), where the data are
changing too rapidly with frequency to be meaningfully aver-
aged. These rapid variations with frequency near 1.11 MHz also
complicate measurements of frequency correlations, which are
therefore not shown here. The error bars are calculated as in
Fig. 1. Lines show the fits using the parameters given in Table I.
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far the largest values of C0 ever reported. A comparison of
these results with the amplitude transmission coefficient
[Fig. 3(c)] reveals that the frequencies where C0 increases
rapidly coincide with the upper edges of pass bands in these
disordered structures. In the band gaps, the transmission
becomes too small for long-range correlations to be
measured. As explained in Refs. [10,38], these band gaps
are not due to Bragg scattering, as in phononic crystals
[39]. Instead, they arise between pass bands formed from
coupled resonances of the beads when the coupling is
sufficiently weak.
Near the upper edges of the pass bands, where the average

density of states decreases, mobility edges between extended
and localized states may be expected [40]. Evidence that
mobility edges do indeed occur near these band edges has
been obtained through separate measurements of increased
spatial confinement of the transmitted intensity near the
upper band edges relative to the pass band centers, using the
method developed by Hu et al. [10]. This evidence is most
compelling for the ME near 1.1 MHz, which is indicated by
the vertical line in Fig. 3. Additional evidence can be inferred
from the large increases that are found in the normalized
intensity variance, CωðΔr ¼ 0;Ω ¼ 0Þ, near the upper band
edges (e.g., Fig. 2 and Ref. [10]). Thus, the large increases in
C0 near 0.78 and 1.1 MHz must be due to large LDOS
fluctuations near Anderson transitions in these samples,
suggesting that C0 is sensitive to critical effects.

This interpretation of the striking increase in C0 near the
band edges is further supported by measurements of the
anomalous multifractal dimension Δ2, which characterizes
the length-scale dependence of the inverse participation
ratio (IPR) P2 ∼ L−d−Δ2 [41]. The significant decrease in
Δ2 near the upper band edges [Fig. 3(b)] is consistent with
the expected behavior near the Anderson transition, where
Δ2 should become increasingly negative, varying from 0 in
the diffuse regime to −2 deep in localized regime [4].
Since the source and detector in our experiments are
pointlike, it is likely that a single mode dominates at any
frequency, so we expect the IPR calculated from the
intensity IðrÞ and from the LDOS ρðrÞ to be equal [28,33].
Then, P2 ¼ L−dhρ2i=hρi2 ¼ L−d½C0ð∞Þ þ 1�, and we
predict that log ½C0ð∞Þ þ 1� ∝ −Δ2. Within experimental
error, the frequency dependencies of CωðΔr → ∞Þ ¼
CðinÞ
0 and Δ2 [Figs. 3(a) and (b)] are consistent with this

prediction. Thus, not only do the infinite-range correla-
tions and the IPR show evidence of transitions from
extended to localized behavior near the upper band edges,
but the correspondence between these measurements
verifies the link between C0, Δ2, and LDOS fluctuations
experimentally.
In conclusion, infinite-range intensity correlations have

been measured directly in a strongly scattering 3D “mes-
oglass” for which Anderson localization of ultrasound was
previously demonstrated [10]. Measurements are consistent
with diagrammatic theory when large magnitudes of both
long-range (C2 and C3) and infinite-range (C0) terms are
assumed. By varying the ultrasonic frequency, we have
been able to investigate the growth not only of C2 and C3

but also of C0 near the Anderson transition. Infinite-range
correlations of order unity are found over a broad range of
frequencies, reflecting the high LDOS contrast that can be
achieved in our samples. The magnitude of these C0

correlations is seen to increase dramatically as a ME is
approached and crossed. These C0 results are mirrored by
the frequency dependence of the anomalous dimension Δ2,
which characterizes the size scaling of the inverse partici-
pation ratio. Our independent measurements of these two
quantities establish a link between C0 and Δ2, revealing
that C0 can be used to probe the Anderson transition. The
possibility of exploiting our findings to experimentally
investigate critical behavior at the Anderson transition, by
focusing on the possible one-parameter scaling of C0 near
the ME, is a promising new avenue for future research.

This work was supported by NSERC and by a PICS
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